Patient Movement Following a Radiological Mass Casualty Incident

Sponsored by the Radiation Injury Treatment Network and the Association of State and Territorial Health Officials

Presenters

- ► Ken Hopper, Program Manager, Federal Patient Movement Coordinator, US Department of Health and Human Services
- ► Chad Hrdina, Chief, Medical Countermeasure Utilization and Response Integration, US Department of Health and Human Services
- Cullen Case, Program Manager, Radiation Injury Treatment Network and Senior Manager, Logistics and Emergency Preparedness, Be the Match

For more information on NDMS:

http://www.phe.gov/Preparedness/responders/ndms/Pages/default.aspx

Division of Medical Countermeasure Strategy and Requirements

"RTR" Framework for Casualty Movement Following a Nuclear Detonation

Chad Hrdina, MS, EMT, GC-WMD

Chief, Medical Countermeasure Utilization and Response Integration

Office of Policy and Planning

Given at RITN Patient Movement Webinar

12 September 2016

Bottom line up front

An improvised nuclear detonation is one of the greatest temporal challenges to emergency operations capabilities, but advanced planning and thinking through the potential situation to leverage scarce resources in a meaningful way, related to the casualty types/needs and behaviors, and environmental factors can prepare a community to responded effectively and save many, many lives.

Nuclear detonation response considerations

- Improvised nuclear detonation will result in
 - Infrastructure damage (response will require flexibility and adaptability)
 - Complex spectrum of injuries (treatment will require polypharmacy approaches)
 - Injury spectrum: radiation exposure, burns, mechanical trauma, combined injuries of acute radiation exposure, trauma and thermal burn
 - Spectrum of injuries changes with different scenarios
 - Resource limitations
 - o Medical management will require complex coordination
 - Patient/casualty movement will require seamless connectivity among capabilities
 - Patient/casualty tracking/records will need to be seamless as well

Potential casualties resulting from a nuclear detonation in a major city

Distribution of casualties f	tribution of casualties from nuclear detonation modeling*				
Injury type	Category	95%ile air / ground scenarios	Pediatric population estimate (23.3 %)†		
Mechanical trauma (ISS¹)	Mild (1-9)	80 000	19 000		
	Moderate (10-14)	121 000	29 000		
	Severe (≥ 15)	143 000	34 000		
Thermal burn (% TBSA ²)	Mild	0	0		
	Moderate	1 000 – 3 000	700		
	Severe	0	0		
Ionizing radiation (cGy³)	Mild (75-150)	72 000	17 000		
	Moderate (150-530)	41 000	10 000		
	Severe (530-830)	12 000	3 000		
	Expectant (>830)	47 000	11 000		
Combined Injury	Radiation: > 150 cGy; trauma/burn: mild-sev	45 000	11 000		

¹ injury severity score

² % total body surface area, partial- and full-thickness burns

³ centigray

^{*}Adapted from Knebel, et al., DMPHP (S1), March 2011: http://jnls.cup.org/pdftext.do?componentId=884885&jid=DMP&freeFlag=OA †http://www.childstats.gov

Nuclear detonation = scarce resources situation

- Resource adequacy will vary greatly across the response areas by time and location (local and region, possibly nationally)
 - Response resources will be overwhelmed by casualty numbers and needs and concerned citizens requesting assistance
 - o Limited access to interventions, (e.g., IV, transfusions, MCMs, conventional care)
 - To achieve fairness in resource allocation, a common triage approach is important
 - Possible change from "conventional" to "contingency" or "crisis" standards of care (treating those "most likely to survive" first approach)
 - Clinical reassessment and repeat triage are critical, as resource scarcity worsens or improves.
- Bottom line: Resources will be limited in the immediate aftermath of an improvised nuclear detonation, and leveraging capabilities efficiently will maximize casualty movement and access to health care and/or evacuation

CONSIDERATIONS FOR ADDRESSING THE SCARCE RESOURCE SITUATION

CONOPS for responseRadiation TRiage, TRansport, TReatment

RTR Sites (Field evacuation)

RTR1 – combined injuries (trauma, burn, radiation)

RTR2 - radiation exposure

RTR3 – limited injuries

AC – assembly centers (screening, initial intervention)

MC – medical centers (triage, screening, intervention)

¹Hrdina, et al. *Prehospital Disaster Medicine*, 2009 May-Jun; 24(3); 167-78

²Planning Guidance for Response to a Nuclear Detonation / 2nd Edition / June 2010

CONOPS for response: activities

To maximize effectiveness of response – we must understand the limitations and constraints of each capability both independently and from a systems view to enable seamless integration of all assets and leverage every efficiency

Response activities and MCM considerations

Response timeline (transition of care)

Stabilization and Resuscitation field care / ER and early intervention

Definitive Care inpatient/outpatient therapy

- Triage and radiation assessment
- Decontamination
- Biodosimetry if possible
- Stabilize mechanical trauma injuries
- Initial burn management and covering
- Initial hemodynamic compensation
- Pain control
- Initiate anti-neutropenic therapy

Activities

- Provide specialized care
- Surgical interventions
- Burn debridement and management
- Long-term inpatient/outpatient care
- Pain control
- Biodosimetry
- Neutropenia therapy / bone marrow transplant
- Transfusion therapy for hemodynamic maintenance

Medical countermeasure considerations

- · Immediate to early access needed
- · Ease of administration, use, application Topical, intramuscular, oral, etc.
- · High therapeutic index required Poor diagnostics, concerned but healthy casualties
- Robust storage, easy deployment Room temperature, lightweight, pre-formulated, etc.
- · Delayed access ok timed as patients arrive
- · Expertise required to administer is ok Surgical grafting, expert assessment, etc.
- Low therapeutic index acceptable Better diagnostics, expert assessment
- Limiting storage requirements may be ok Frozen, cryopreservation, etc.

Casualty movement: RTR 1

Casualty archetypes

- · Burns, fractures, lacerations, bleeding
- Possible radiation exposure
- Combination injuries
- Some with limited injuries / some with severe injuries

Decisions

- Initial triage level
- Send to medical center or assembly center?

Where, when, who

- · Location: Damage zones and around blast area where people self-aggregate
- When: Immediately 1 week
- Operator: Local EMS, volunteers

Goals at site

· Stabilize medical patients and route casualties to next level of care

Activities/Interventions

- disposition (decon if possible) Splint fractures
- Stop bleeding
- Initial coverings (e.g., burns)
- · Radiation triage

Casualty Movement Factors

- · Infrastructure damage
- **Limited patient transport** resources
- Volunteer transport may be available
- Casualties may have to walk
- **Patient tracking**

Casualty movement: RTR 2

Casualty archetypes

- Radiation exposure
- Possible burns, fractures, lacerations, bleeding
- Possible combined injuries
- Variety of radiation doses

Decisions

- Initial triage level
- Send to medical center or assembly center?

Where, when, who

- · Location: Edge of the fallout zones/where people selfaggregate
- When: Immediately 48 hours
- **Operator: Local EMS,** volunteers

Goals at site

· Initial stabilization and route patients to next level of care

Activities/Interventions

- Stabilization and triage/ disposition (decon if possible)
- Splint fractures
- Stop bleeding
- Initial coverings (e.g., burns)
- Radiation triage

Casualty Movement Factors +

- Infrastructure damage
- Limited patient transport resources
- Volunteer transport may be available
- Casualties may have to walk
- **Patient tracking**

Casualty movement: RTR 3

Casualty archetypes

- · Limited/no injuries or exposure
- Possible radiation exposure
- Possible burns, fractures, lacerations, bleeding
- Possible combined injuries

Decisions

- Initial triage level
- Send to medical center or assembly center, or shelter/evacuation center?

Where, when, who

- Location: outside damage and fallout zones
- When: Immediately 48 hours
- Operator: Local EMS, volunteers

Goals at site

· Initial stabilization and route patients to next level

Activities/Interventions

- Stabilization and triage/ disposition (decon if possible)
- · Radiation triage

Casualty Movement Factors +

- Limited patient transport resources
- Volunteer transport may be available
- · Casualties may have to walk
- Tracking

Casualty movement: Medical centers

Casualty archetypes

- · Burns, fractures, lacerations, bleeding
- Possible radiation exposure
- Combination injuries
- Some with limited injuries / some with severe injuries

Decisions

- Triage level
- Provide surgical interventions/transfusion?
- · Definitive care disposition (level of care) or discharge
- Initiate myeloid cytokines for neutropenia?

Where, when, who

- · Location: in local area and region
- When: Immediately 1 month
- · Operator: Medical personnel, EMS, volunteers (Federal support once deployed)

Goals at site

· Stabilize medical patients, provide necessary interventions, radiation intervention, and route casualties to next level of care

Activities/Interventions

- Decontamination
- · Stabilization and triage
- Splint fractures
- · Stop bleeding
- Initial coverings (e.g., burns)
- Radiation screening

Casualty Movement Factors

- Some infrastructure damage
- Limited patient transport resources
- Volunteer transport may be available
- **Patient tracking**

Casualty movement: Assembly centers

Casualty archetypes

- · Possible burns, fractures, lacerations, bleeding
- Possible combined injuries
- Variety of radiation doses

Decisions

- Need medical intervention?
- Definitive care disposition? **RITN center?**
- Initiate myeloid cytokines for neutropenia?

Where, when, who

- · Location: local area and region
- When: Immediately 1 week
- · Operator: Local EMS, volunteers, NGOs

Goals at site

· Stabilize casualties, initial radiation intervention, and route patients to next level of care

Activities/Interventions

- Decontamination
- Triage
- · Basic care as needed for fractures, burns, lacerations
- Radiation screening

Casualty Movement Factors __+

- · Infrastructure damage
- Limited patient transport resources
- Volunteer transport may be available
- Casualties may have to walk
- **Patient tracking**

Casualty movement: Evacuation centers

Casualty archetypes

- · Radiation exposure
- · Burns, fractures, lacerations, bleeding
- Possible combined injuries
- Variety of radiation doses
- No injuries

Decisions

- Disposition?
- Transport level of care?
- Continue myeloid cytokines for neutropenia?

Where, when, who

- Location: local area and region
- When: Immediately 1-2 weeks
- **Operator: Local EMS,** volunteers, Federal staff, **NGOs**

Goals at site

 Transport casualties to national definitive care or mass care shelters

Activities/Interventions

- Possible decontamination
- Continuation care as needed
- Transport to final destinations

Casualty Movement Factors

- Decontamination
- Accessing casualty transport resources
- Volunteer transport may be available
- Patient tracking

Casualty movement: national care

Casualty archetypes

- · Radiation exposure
- · Burns, fractures, lacerations, bleeding
- Possible combined injuries
- Variety of radiation doses

Decisions

- Level of care: Inpatient / outpatient?
- Continue myeloid cytokines for neutropenia?

Where, when, who

- Location: national
- When: 48 hours months
- Operator: NGOs and Federal staff

Goals at site

· Return healthy people home

Activities/Interventions

- Radiation Assessment
- Possible decontamination
- Definitive care/long term care
- **Specialty interventions**
- · "Return home"

Casualty Movement Factors

- Decontamination
- Receiving casualties/disposition
- Patient tracking
- · Return to home: how?

Summary of considerations for patient movement

- · Casualty tracking will be essential to ensure continuity of care
- Scarce resource reality
 - Seamless systems-integration of scarce capabilities and resources will ensure efficient casualty flow and maximize access to care
 - Right level of care at the right "RTR" level (appropriate effort) will ensure efficient patient flow and maximize life-saving through resource conservation
 - Effective communication and common operating picture (plan in advance and exercise) will ensure scarce resources can function seamlessly to maximize effectiveness of response
- You probably can't save everyone, but a plan, judiciously executed with transparent coordination can save the most lives

Bottom line

An improvised nuclear detonation is one of the greatest temporal challenges to emergency operations capabilities, and requires a well-thought-out plan/operational framework that leverages situational factors through seamless coordination, thereby ensuring integration of capabilities and maximum access to care by the many casualties who will require assistance.

est. 2006

Radiation Injury Treatment Network®

Cullen Case Jr., CEM, CHEP
RITN Program Manager
National Marrow Donor Program/Be The Match
763.406.8402 wk | 612.214.3549 mbl
ccase@nmdp.org

2016 Radiological Disaster Patient Movement Webinar

What is RITN? Concept of Operations (ConOps) Efforts

The Radiation Injury Treatment Network® (RITN) is preparing to provide comprehensive evaluation and treatment for victims of radiation exposure or other marrow toxic injuries from a distant incident.

76 cancer centers /hospitals/ blood donor centers/cord blood banks

- 1. Not 1st Responders and no trauma care
- 2. Preparing to receive casualties from a distant location
- 3. Expect patient surge ~7 days after incident
- 4. Casualty distribution is through NDMS

3 2016 Radiological Disaster Patient Movement Webinar

www.RITN.net

RITN Center Locations

Donor Centers

Transplant Centers

Cord Blood Centers

Updated Map on RITN website

at www. ritn.net/about/.

Why Cancer Centers

- Through cancer treatment process patients are irradiated or given chemotherapy to destroy their immune system
- Acute Radiation Syndrome (ARS) mimics what hematology/oncology staff see daily with blood cancers
- This is what happens to a person that is exposed to ionizing radiation

Dose (Gy)	12 and above 11	1	Neurovascular syndrome onset	Multiple organ failure Probable death
	10 9 8			Consider stem cell transplants
	7 6		GI syndrome onset	LD50/60 with supportive care
	5 4 3	rrow		LD50/60 without treatment
	1 0	Borne Marrow Suppression	Hematopoietic syndrome onset	~100% survival without treatment

From: Medical Management of Radiological Casualties (Fourth Edition – July 2013) Military Medical Operations, Armed Forces Radiobiology Research Institute, Bethesda, Maryland 20889-5603 http://www.usuhs.edu/afr/foutreach/4thEdition.html accessed 4/3/14

2016 Radiological Disaster Patient Movement Webinar

www.RITN.net

Casualty Profile

85% of casualties will have trauma or combined injuries and receive treatment elsewhere

15% will have "radiation only" injuries and be sent to RITN centers for definitive medical care

Casualty Estimates adapted from: Knebel AR, Coleman CN, Cliffer KD; et al. Allocation of scarce resources after a nuclear detonation: setting the context. Disaster Med Public Health Prep. 2011;5 (Suppl 1):S20-S31

2016 Radiological Disaster Patient Movement Webinar

www.RITN.net

RITN Efforts

- Training (over 13,000 trained since 2006)
 - Medical Grand Rounds PPT on RITN.net
 - Free web based training on RITN.net
 - Basic Radiation Training
 - Non-medical Radiation Awareness
 - Radiation Safety Communication
- Exercises (582 since 2006)
 - All exercise materials and AARs are available on RITN.net
- Medical Order Sets (adult and ped) on RITN.net & REMM.NLM.gov
- Referral guidelines on RITN.net
- ARS Treatment Guidelines on RITN.net

13

2016 Radiological Disaster Patient Movement Webinar

www.RITN.net

"the specter of nuclear terrorism still threaten us all."

-President Barack Obama

June 2, 2016 address to the US Air Force Academy

Partners

14

2016 Radiological Disaster Patient Movement Webinar

www.RITN.net

