Patient Movement Following a Radiological Mass Casualty Incident

Sponsored by the Radiation Injury Treatment Network and the Association of State and Territorial Health Officials

Presenters

- Ken Hopper, Program Manager, Federal Patient Movement Coordinator, US Department of Health and Human Services
- Chad Hrdina, Chief, Medical Countermeasure Utilization and Response Integration, US Department of Health and Human Services
- Cullen Case, Program Manager, Radiation Injury Treatment Network and Senior Manager, Logistics and Emergency Preparedness, Be the Match
For more information on NDMS:

http://www.phe.gov/Preparedness/responders/ndms/Pages/default.aspx
“RTR” Framework for Casualty Movement Following a Nuclear Detonation

Chad Hrdina, MS, EMT, GC-WMD
Chief, Medical Countermeasure Utilization and Response Integration
Office of Policy and Planning

Given at RITN Patient Movement Webinar
12 September 2016

Bottom line up front

An improvised nuclear detonation is one of the greatest temporal challenges to emergency operations capabilities, but advanced planning and thinking through the potential situation to leverage scarce resources in a meaningful way, related to the casualty types/needs and behaviors, and environmental factors can prepare a community to responded effectively and save many, many lives.
Nuclear detonation response considerations

- Improvised nuclear detonation will result in
 - Infrastructure damage (response will require flexibility and adaptability)
 - Complex spectrum of injuries (treatment will require polypharmacy approaches)
 - Injury spectrum: radiation exposure, burns, mechanical trauma, combined injuries of acute radiation exposure, trauma and thermal burn
 - Spectrum of injuries changes with different scenarios
 - Resource limitations
 - Medical management will require complex coordination
 - Patient/casualty movement will require seamless connectivity among capabilities
 - Patient/casualty tracking/records will need to be seamless as well

Potential casualties resulting from a nuclear detonation in a major city

<table>
<thead>
<tr>
<th>Injury type</th>
<th>Category</th>
<th>95%ile air / ground scenarios</th>
<th>Pediatric population estimate (23.3 %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical trauma (ISS(^1))</td>
<td>Mild (1-9)</td>
<td>80 000</td>
<td>19 000</td>
</tr>
<tr>
<td></td>
<td>Moderate (10-14)</td>
<td>121 000</td>
<td>29 000</td>
</tr>
<tr>
<td></td>
<td>Severe (≥ 15)</td>
<td>143 000</td>
<td>34 000</td>
</tr>
<tr>
<td>Thermal burn (% TBSA(^2))</td>
<td>Mild</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>1 000 – 3 000</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ionizing radiation (cGy(^3))</td>
<td>Mild (75-150)</td>
<td>72 000</td>
<td>17 000</td>
</tr>
<tr>
<td></td>
<td>Moderate (150-530)</td>
<td>41 000</td>
<td>10 000</td>
</tr>
<tr>
<td></td>
<td>Severe (530-830)</td>
<td>12 000</td>
<td>3 000</td>
</tr>
<tr>
<td></td>
<td>Expectant (>830)</td>
<td>47 000</td>
<td>11 000</td>
</tr>
<tr>
<td>Combined Injury</td>
<td>Radiation: > 150 cGy; trauma/burn: mild-sev</td>
<td>45 000</td>
<td>11 000</td>
</tr>
</tbody>
</table>

\(^1\) injury severity score
\(^2\) % total body surface area, partial- and full-thickness burns
\(^3\) centigray

*Adapted from Knebel, et al., DMPHP (51), March 2011: http://jnls.cup.org/pdftext.do?componentId=8848885&jid=DMP&freeFlag=OA
*http://www.childstats.gov
Nuclear detonation = scarce resources situation

• Resource adequacy will vary greatly across the response areas by time and location (local and region, possibly nationally)
 – Response resources will be overwhelmed by casualty numbers and needs and concerned citizens requesting assistance
 o Limited access to interventions, (e.g., IV, transfusions, MCMs, conventional care)
 – To achieve fairness in resource allocation, a common triage approach is important
 o Possible change from "conventional" to "contingency" or "crisis" standards of care (treating those "most likely to survive" first approach)
 – Clinical reassessment and repeat triage are critical, as resource scarcity worsens or improves.

• Bottom line: Resources will be limited in the immediate aftermath of an improvised nuclear detonation, and leveraging capabilities efficiently will maximize casualty movement and access to health care and/or evacuation

CONSIDERATIONS FOR ADDRESSING THE SCARCE RESOURCE SITUATION
CONOPS for response
Radiation TRiage, TRansport, TReatment

RTR Sites (Field evacuation)
RTR1 – combined injuries (trauma, burn, radiation)
RTR2 – radiation exposure
RTR3 – limited injuries

AC – assembly centers (screening, initial intervention)
MC – medical centers (triage, screening, intervention)

To maximize effectiveness of response – we must understand the limitations and constraints of each capability both independently and from a systems view to enable seamless integration of all assets and leverage every efficiency.
Response activities and MCM considerations

Response timeline (transition of care)

Stabilization and Resuscitation
field care / ER and early intervention

Definitive Care
inpatient/outpatient therapy

Activities

• Triage and radiation assessment
• Decontamination
• Biodosimetry if possible
• Stabilize mechanical trauma injuries
• Initial burn management and covering
• Initial hemodynamic compensation
• Pain control
• Initiate anti-neutropenic therapy

Medical countermeasure considerations

• Immediate to early access needed
• Ease of administration, use, application
 Topical, intramuscular, oral, etc.
• High therapeutic index required
 Poor diagnostics, concerned but healthy casualties
• Robust storage, easy deployment
 Room temperature, lightweight, pre-formulated, etc.

Activities

• Provide specialized care
• Surgical interventions
• Burn debridement and management
• Long-term inpatient/outpatient care
• Pain control
• Biodosimetry
• Neutropenia therapy / bone marrow transplant
• Transfusion therapy for hemodynamic maintenance

Casualty movement: RTR 1

Casualty archetypes

• Burns, fractures, lacerations, bleeding
• Possible radiation exposure
• Combination injuries
• Some with limited injuries / some with severe injuries

Decisions

• Initial triage level
• Send to medical center or assembly center?

Where, when, who

• Location: Damage zones and around blast area where people self-aggregate
• When: Immediately – 1 week
• Operator: Local EMS, volunteers

Goals at site

• Stabilize medical patients and route casualties to next level of care

Activities/Interventions

• Stabilization and triage/disposition (decon if possible)
• Splint fractures
• Stop bleeding
• Initial coverings (e.g., burns)
• Radiation triage

Casualty Movement Factors

• Infrastructure damage
• Limited patient transport resources
• Volunteer transport may be available
• Casualties may have to walk
• Patient tracking
Casualty movement: RTR 2

Casualty archetypes
- Radiation exposure
- Possible burns, fractures, lacerations, bleeding
- Possible combined injuries
- Variety of radiation doses

Decisions
- Initial triage level
- Send to medical center or assembly center?

Where, when, who
- Location: Edge of the fallout zones/where people self-aggregate
- When: Immediately – 48 hours
- Operator: Local EMS, volunteers

Activities/Interventions
- Stabilization and triage/disposition (decon if possible)
- Splint fractures
- Stop bleeding
- Initial coverings (e.g., burns)
- Radiation triage

Goals at site
- Initial stabilization and route patients to next level of care

Casualty Movement Factors
- Infrastructure damage
- Limited patient transport resources
- Volunteer transport may be available
- Casualties may have to walk
- Patient tracking

Casualty movement: RTR 3

Casualty archetypes
- Limited/no injuries or exposure
- Possible radiation exposure
- Possible burns, fractures, lacerations, bleeding
- Possible combined injuries

Decisions
- Initial triage level
- Send to medical center or assembly center, or shelter/evacuation center?

Where, when, who
- Location: outside damage and fallout zones
- When: Immediately – 48 hours
- Operator: Local EMS, volunteers

Activities/Interventions
- Stabilization and triage/disposition (decon if possible)
- Radiation triage

Goals at site
- Initial stabilization and route patients to next level of care

Casualty Movement Factors
- Limited patient transport resources
- Volunteer transport may be available
- Casualties may have to walk
- Tracking
Casualty Movement: Medical Centers

<table>
<thead>
<tr>
<th>Casualty Archetypes</th>
<th>Decisions</th>
<th>Where, When, Who</th>
<th>Goals at Site</th>
<th>Activities/Interventions</th>
<th>Casualty Movement Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burns, fractures, lacerations, bleeding</td>
<td>Triage level</td>
<td>Location: in local area and region</td>
<td>Stabilize medical patients, provide necessary interventions, radiation intervention, and route casualties to next level of care</td>
<td>Decontamination</td>
<td>Some infrastructure damage</td>
</tr>
<tr>
<td>Possible radiation exposure</td>
<td>Provide surgical interventions/transfusion?</td>
<td>When: Immediately – 1 month</td>
<td></td>
<td>Stabilization and triage</td>
<td>Limited patient transport resources</td>
</tr>
<tr>
<td>Combination injuries</td>
<td>Definitive care disposition (level of care) or discharge</td>
<td>Operator: Medical personnel, EMS, volunteers (Federal support once deployed)</td>
<td></td>
<td>Splint fractures</td>
<td>Volunteer transport may be available</td>
</tr>
<tr>
<td>Some with limited injuries / some with severe injuries</td>
<td>Initiate myeloid cytokines for neutropenia?</td>
<td></td>
<td></td>
<td>Stop bleeding</td>
<td>Patient tracking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initial coverings (e.g., burns)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Radiation screening</td>
<td></td>
</tr>
</tbody>
</table>

Casualty Movement: Assembly Centers

<table>
<thead>
<tr>
<th>Casualty Archetypes</th>
<th>Decisions</th>
<th>Where, When, Who</th>
<th>Goals at Site</th>
<th>Activities/Interventions</th>
<th>Casualty Movement Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation exposure</td>
<td>Need medical intervention?</td>
<td>Location: local area and region</td>
<td>Stabilize casualties, initial radiation intervention, and route patients to next level of care</td>
<td>Decontamination</td>
<td>Infrastructure damage</td>
</tr>
<tr>
<td>Possible burns, fractures, lacerations, bleeding</td>
<td>Definitive care disposition? RITN center?</td>
<td>When: Immediately – 1 week</td>
<td></td>
<td>Triage</td>
<td>Limited patient transport resources</td>
</tr>
<tr>
<td>Possible combined injuries</td>
<td>Initiate myeloid cytokines for neutropenia?</td>
<td>Operator: Local EMS, volunteers, NGOs</td>
<td></td>
<td>Basic care as needed for fractures, burns, lacerations</td>
<td>Volunteer transport may be available</td>
</tr>
<tr>
<td>Variety of radiation doses</td>
<td></td>
<td></td>
<td></td>
<td>Radiation screening</td>
<td>Casualties may have to walk</td>
</tr>
</tbody>
</table>

Casualty Movement Factors
- Some infrastructure damage
- Limited patient transport resources
- Volunteer transport may be available
- Casualties may have to walk
Casualty movement: Evacuation centers

Casualty archetypes
- Radiation exposure
- Burns, fractures, lacerations, bleeding
- Possible combined injuries
- Variety of radiation doses

Decisions
- Disposition?
- Transport level of care?
- Continue myeloid cytokines for neutropenia?

Where, when, who
- Location: local area and region
- When: Immediately – 1-2 weeks
- Operator: Local EMS, volunteers, Federal staff, NGOs

Goals at site
- Transport casualties to national definitive care or mass care shelters

Activities/Interventions
- Possible decontamination
- Continuation care as needed
- Transport to final destinations

Casualty Movement Factors
- Decontamination
- Accessing casualty transport resources
- Volunteer transport may be available
- Patient tracking

Casualty movement: national care

Casualty archetypes
- Radiation exposure
- Burns, fractures, lacerations, bleeding
- Possible combined injuries
- Variety of radiation doses

Decisions
- Level of care: Inpatient / outpatient?
- Continue myeloid cytokines for neutropenia?

Where, when, who
- Location: national
- When: 48 hours – months
- Operator: NGOs and Federal staff

Goals at site
- Return healthy people home

Activities/Interventions
- Radiation Assessment
- Possible decontamination
- Definitive care/long term care
- Specialty interventions
- “Return home”

Casualty Movement Factors
- Decontamination
- Receiving casualties/disposition
- Patient tracking
- Return to home: how?
Summary of considerations for patient movement

• Casualty tracking will be essential to ensure continuity of care
• Scarce resource reality
 – Seamless systems-integration of scarce capabilities and resources will ensure efficient casualty flow and maximize access to care
 – Right level of care at the right “RTR” level (appropriate effort) will ensure efficient patient flow and maximize life-saving through resource conservation
 – Effective communication and common operating picture (plan in advance and exercise) will ensure scarce resources can function seamlessly to maximize effectiveness of response
• You probably can’t save everyone, but a plan, judiciously executed with transparent coordination can save the most lives

Bottom line

An improvised nuclear detonation is one of the greatest temporal challenges to emergency operations capabilities, and requires a well-thought-out plan/operational framework that leverages situational factors through seamless coordination, thereby ensuring integration of capabilities and maximum access to care by the many casualties who will require assistance.
What is RITN?

Concept of Operations (ConOps)

Efforts
The Radiation Injury Treatment Network® (RITN) is preparing to provide comprehensive evaluation and treatment for victims of radiation exposure or other marrow toxic injuries from a distant incident.

76 cancer centers /hospitals/ blood donor centers/cord blood banks

1. Not 1st Responders and no trauma care
2. Preparing to receive casualties from a distant location
3. Expect patient surge ~7 days after incident
4. Casualty distribution is through NDMS

Why Cancer Centers

- Through cancer treatment process patients are irradiated or given chemotherapy to destroy their immune system
- Acute Radiation Syndrome (ARS) mimics what hematology/oncology staff see daily with blood cancers
- This is what happens to a person that is exposed to ionizing radiation

RITN ConOps

10 KT IND per US Planning Scenarios

10 KT IND per US Planning Scenarios

Casualty Profile

85% of casualties will have trauma or combined injuries and receive treatment elsewhere

15% will have “radiation only” injuries and be sent to RITN centers for definitive medical care

RITN will need to have inpatient care for 30% of the radiation only casualties

70% of the radiation only casualties will require outpatient monitoring

Flow of Casualties to a RITN Center

*** This model does not account for casualties treated in the vicinity of the disaster or evacuees with no injuries.

RITN Efforts
RITN Efforts

• Training (over 13,000 trained since 2006)
 – Medical Grand Rounds PPT on RITN.net
 – Free web based training on RITN.net
 • Basic Radiation Training
 • Non-medical Radiation Awareness
 • Radiation Safety Communication

• Exercises (582 since 2006)
 – All exercise materials and AARs are available on RITN.net

• Medical Order Sets (adult and ped) on RITN.net & REMM.NLM.gov

• Referral guidelines on RITN.net

• ARS Treatment Guidelines on RITN.net

“the specter of nuclear terrorism still threaten us all.”

- President Barack Obama

June 2, 2016 address to the US Air Force Academy
Questions + Discussion

Contact Information

- **RITN**

 Cullen Case
 ccase@nmstp.org

- **ASTHO**

 Heather Misner
 hmisner@astho.org